Mouse Models of Cancer

“chinganso-date-gusa” – The Breeding of Curious Varieties of the Mouse - Chobei Zenya, Kyoto, 1775
Early History of mice in research

• Earliest publication on mouse breeding was in 1775, by Chobei Zenya, a money changer from Kyoto.

• The breeding of “Fancy” mice because an aristocratic pastime in Europe in the 1800’s.

• Laboratory mice were originally studied by European zoologists as a means to test Galton’s law of ancestral inheritance (latter half of the 19th century).

• With the re-discovery of Mendel’s laws of inheritance in the early 1900’s, the mouse was repurposed to test whether Mendelian genetics also applied to mammals.

• In 1902, Lucien Cuenot confirmed that coat color inheritance followed Mendelian inheritance patterns.

• In 1904, Cuenot also proved the presence of two alleles at the same genetic locus.
Early History of mice in research

- In 1908, William Earnst Castle established the Bussey institute at Harvard as a center for mammalian genetics. Castle and his undergraduate, Clarence Cook Little, expanded coat color studies to 9 genetic loci, and demonstrated the first lethal phenotype (A^y) in mammals. Inbred strains were established.

- As a grad student, C.C. Little joined the lab of Earnst Edward Tyzzer at Harvard, and studied the transplantation of spontaneous tumors between mice of different strains.

- From this work, Little and Tyzzer (1916) accurately predicted some basic concepts in immunology, specifically the multi-gene basis for immune recognition of “self”.

- C.C. Little went on to become the President of the University of Michigan, and later to found the Jackson Laboratories in Maine.
History of mice in cancer research

- Extensive efforts to identify mice with high or low cancer incidence culminated in 1933 with the discovery that the tendency to inherit mammary tumors in mice had both genetic components and non-genetic components.

- For more than 50 years, “forward genetics” was the mainstay. Mice prone to developing cancer were isolated or induced to understand the underlying mutations.

- The development of restriction enzymes and the isolation of embryonic stem cells in the 1970’s led to the first engineering of mouse genes in the 1980, and the dawn of “reverse genetics” in mice. Mutations in specific genes could be induced and the resulting phenotype studied.

Forward genetics: The study of mutations that cause a known phenotype.

Reverse genetics: The study of phenotypes that are caused by a known mutation.
Uses of Mouse Models of Cancer

• Studies of cancer gene function
 (Mouse +/- Gene X)

• A source of genetically defined cells of many types
 (Isolate cell lines from different tissues)

• Understand the biology of specific diseases
 (Engineer mice with a type of cancer, and study how it works)

• Understand the role of environment in disease and its interaction with genetics

• Understand the interactions of drugs with cancer
 (Pharmacology and molecular biology of tumors treated with drugs)

• As final efficacy screens before clinical trials (pre-clinical trials)

• Better interpret the results of clinical trials (co-clinical and post-clinical trials)
Advantages/Disadvantages of Cancer Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humans</td>
<td>Most accurate</td>
<td>Least manipulable
Extremely slow generation time (16 – 40 years)
Genetically outbred</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Extremely fast growth (30 minutes)
Powerful genetic tools
Powerful biochemical techniques</td>
<td>Haploid, unicellular
Great evolutionary divergence
Not useful for efficacy screens</td>
</tr>
<tr>
<td>Yeast</td>
<td>Very fast growth (100 minutes)
Eukaryotic cells
Powerful genetic and biochemical techniques</td>
<td>Unicellular
Significant evolutionary divergence
Not useful for efficacy screens</td>
</tr>
<tr>
<td>Mammalian Cell Culture</td>
<td>Fast growth (18 - 24 hours)
Accurate genetics (especially in human cells)
Powerful genetic and biochemical techniques</td>
<td>2D growth is different than 3D growth
Only one or a few cell types (no stroma)
No immune system
Often inaccurate in predicting response to therapy</td>
</tr>
<tr>
<td>Drosophila</td>
<td>Multicellular
Reasonably fast growth (7 days)
Powerful genetic tools</td>
<td>Significant evolutionary divergence
Differences in organ composition/structure
Not useful for efficacy screens</td>
</tr>
<tr>
<td>Zebrafish</td>
<td>Vertebrate
Optically clear for longitudinal studies
Powerful genetic techniques</td>
<td>Few antibodies available
Difficult to interpret histopathology
Very slow generation time (3-4 months)</td>
</tr>
<tr>
<td>Mice</td>
<td>Mammal
Fairly accurate genetics
Powerful genetic tools
Accurate histopathology of diseases</td>
<td>Slow generation time (9 weeks)
Mice are not small, furry people</td>
</tr>
</tbody>
</table>
Classes of Mouse Models of Cancer

- **Viral infection models**
 Infection with natural or engineered viruses

- **Chemical induced carcinogen models**
 Treatment with cancer-causing chemicals

- **Transplantation Models**
 Implantation/injection with tumor tissues or cells

- **Engraftment Models**
 Incorporation of tumorigenic cells into normal tissues

- **Transgenic Models**
 Randomly inserting tumor-promoting DNA into the mouse genome

- **Genetically Engineered Models**
 Targeted manipulation of specific sites in the mouse genome

- **Somatic Engineering Models**
 Targeted manipulation of specific sites in the mouse
Chemical Carcinogen Models

• **1775- Sir Percival Pott**, a London surgeon, noticed that chimney sweepers frequently developed a peculiar form of scrotal cancer. He ascribed it to frequent, direct contact with coal tar. This launched 125 years of research into the chemical basis of cancer.

• **Treatment of mice with carcinogens** is the basis of numerous mouse models of cancer.

 - **Skin** – 7,12-dimethylbenz[α]anthracene (DMBA) + 2-O-tetradecanoylphorbol-13-acetate (TPA)
 - **Lung** – Nitrosamines
 - **Liver** – vinyl chloride
 - **Breast** – N-Nitroso-N-methylurea (NMU)
 - **Colon** – dimethylhydrazine (DMH) Nitrosamines
 - **Bladder** – Aromatic Amines

 DMBA/TPA

Advantages – Very quick, cheap, and easy to use
Some models use common environmental carcinogens

Disadvantages – Challenging to identify the mutations induced by a chemical in a given cell or tumor.

Uses – Replicate exposure to complex environmental carcinogens such as cigarette smoke
Viral Infection Models

- **Cancer-causing viruses** such as the Rous Sarcoma Virus (RSV) were initially discovered in chickens in 1911 by Peyton Rous (Nobel Prize, 1966) at Rockefeller U.

- **Mouse Mammary Tumor Virus (MMTV)** was the first mouse virus, isolated at Jackson labs as the “non-chromosomal factor” that caused mammary tumors in the C3H strain of mice. Transmitted through milk- pups fostered to mothers of other strains did not develop breast tumors. (John Joseph Bittner, 1936)

- **Some viruses cause cancer via random integration in certain cells**

- **Some viruses carry cellular oncogenes**
 - Abelson murine leukemia virus - Abl
 - Moloney murine sarcoma virus – Raf
 - FBJ osteosarcoma virus - Fos
 - Friend murine leukemia virus – c-fms

- This was predicted by **Ed Scolnick** in 1973, and proven by **Harold Varmus**, **Mike Bishop**, **Peter Vogt** in 1976 (**1989 Nobel Prize in Physiology/Medicine**)

- The finding that viruses simply regulate endogenous genes diminished interest. However, Gardasil (Merck) is a highly effective vaccine against HPV induced cervical cancer.

- Engineered viruses now used routinely in the laboratory to induce genetic changes that lead to cancer.
Transplantation Models

Tumor cells or tissues transplanted into a host mouse
 • Pioneered in the 1960’s and 1970’s

Ectopic – Implanted into a different organ than the original (typically subcutaneous or kidney capsule)

Orthotopic – Implanted into the analogous organ of the original tumor

Advantages –
 Typically cheap and fast
 Typically easy to use
 Not covered by patents

Disadvantages –
 Inaccurate histopathology compared to human tumors
 Lack of step-wise progression through pre-neoplastic stages
 Evolution of tumor cells during passaging
 Requirement for angiogenesis to support the newly transplanted tumor
 Historically poor ability to predict response to therapy in humans
Transplantation Models

Cell line based xenografts

Advantages –
- Very easy to maintain cell lines indefinitely;
- Very fast to generate large numbers of xenograft tumors;
- Relative homogeneity of tumors makes it easy to detect differences;
- Comparatively cheap.

Disadvantages –
- Inaccurate histopathology compared to human tumors;
- Lack of an immune system;
- Selection of cells during adaptation to growth on plastic;
- Evolution of tumor cells during culture;
- Historically poor ability to predict response to therapy in humans.
Transplantation Models

Cell line based syngeneic allografts

Advantages –
- Very easy to maintain cell lines indefinitely;
- Very fast to generate large numbers of xenograft tumors
- Relative homogeneity of tumors makes it easy to detect differences
- Comparatively cheap
- **Intact immune system**

Disadvantages –
- **Mouse cells rather than human**
- Inaccurate histopathology compared to human tumors
- Selection of cells during adaptation to growth on plastic
- Evolution of tumor cells during culture
- Historically poor ability to predict response to therapy in humans
Transplantation Models

Patient-derived xenografts (PDX models)

Advantages –
Neoplastic cells are human and may better interact with drugs designed for human proteins
Transplant both neoplastic cells and stroma
Each PDX in a mouse represents the specific human patient
No adaptation acquired during cell culture
May be serially passaged in mice

Disadvantages –
Lack of an immune system
Stromal cells are rapidly depleted over 1-3 passages
Requirement for angiogenesis to support the newly transplanted tumor
Requires a major infrastructure to acquire and maintain human tumors
Relatively new- unclear how accurate they are
Engraftment Models

Organ reconstitution models: cell engraft and create a normal organ, from which focal cancer then emerges.

Engraftment Models

Advantages –
Step-wise progression through pre-neoplastic stages
Can engineer the donor cells to study gene function or add reporters
Relatively rapid and cheap
Amenable to powerful genetic screening approaches

Disadvantages –
Lack of an immune system when using human donor cells
Only available for a few organ systems: breast, liver, hematopoietic

Organoid implantation- (Hans Clevers, David Tuveson Boj et. al, Cell 160: 324-328, 2015)
 • Culture 3D organoids in a specialized matrix
 • Genetically modify organoid cells
 • Implant into normal organ (pancreas, colon)
 • Develop into normal cells, then premalignancies, then cancer.

Mammary reconstitution- (Kuperwasser et al, 2004; PNAS 101(14):4966-71)
 • clear the fat pad from a recipient mouse
 • Isolate mammary epithelial cells from donor mice
 • Genetically manipulate donor cells (lentiviruses)
 • Inject mammary epithelial cells into cleared fat pad
 • Mammary adenocarcinoma

Liver reconstitution- (Scott Lowe lab)
 • Isolate fetal liver cells
 • Genetically manipulate donor cells
 • Inject fetal liver cells into newborn liver
 • Hepatocellular carcinoma

Hematopoietic reconstitution- (many laboratories)
 • Isolate fetal hematopoietic cells
 • Genetically manipulate donor cells
 • Inject fetal liver cells into newborn liver
 • Lymphoma, myeloid leukemias
Engineering Cancer in Mice

- Mice can be genetically engineered to develop cancer
- Use the human disease as a guide
- Mutations found in cancer can be programmed into mice
- Not all mice that develop cancer are “good” models of human disease
- Compare tumors in mice to human tumors- validation

Engineering a Mouse

1. Embryonic Stem Cell
2. Mutant Embryonic Stem Cell
3. Blastocyst
4. Injection
5. Chimera
6. Genetically Engineered Mouse
This video has been kindly provided by Johannes Wilbertz, from the Karolinska Institute, in Stockholm (Sweden) and belongs to a large collection of educational videos available from the International Society for Transgenic Technologies (ISTT) web site. https://www.youtube.com/watch?v=1m9kQuKXXxA
Engineered mice

Recipient blastocyst strain Chimera Donor ES cell strain
Genetically Engineered mice

Advantages –
- Step-wise progression through pre-neoplastic stages
- Can engineer specific mutations to study gene function or add reporters
- Well established and understood technology
- Amenable to powerful genetic screening approaches
- Powerful genetic tools for imaging and other applications
- Tumors develop in the presence of an intact immune system
- Can model both the neoplastic component and stroma cells
- Indications that the “best” engineered models are more accurate in predicting the response of human tumors to therapy

Disadvantages –
- Mice are not people; mouse cells are not human cells
- Laboratory strains fail to represent the genetic diversity of human population
- Mouse tumors typically grow very fast relative to human tumors
- Complicated engineering strategies typically have drawbacks
- Relatively slow and expensive
- Requires a dedicated infrastructure
- By providing one or more “hits”, genetically engineered tumors are able to shortcut evolution, and therefore they develop less complex genomes
Transgenic Models

Randomly integrate DNA constructs into ES cells

- **cDNA transgenic**
 - CMV
 - cDNA

- **tissues-specific transgenic**
 - TSP
 - cDNA

- **BAC transgenic**
 - Intact Gene

- **BAC transgenic**
 - Intact Promotor
 - cDNA

Uses – Demonstrate what happens when you overexpress gene X
Used to create tissue specific gene regulatory elements for more complex strategies

Advantages – Easy to engineer. Comparatively rapid and cheap

Disadvantages – Random site of integration can lead result in positional effects
Overexpression of cDNA lacks the physiological gene regulation
Transgenic Models

Modern transgenic techniques allow for more subtle genetic control

Advantages:
- Rapid way to learn what reduced expression of a gene does. May mimic drug action.

Disadvantages:
- Never get zero expression.

Advantages:
- Extremely rapid generation of transgenic lines

Disadvantages:
- Random integration.
- Can be multicopy.
- Silencing of viral LTR promoters is common
Genetically Engineered Mouse Models

Targeted integration of DNA into specific sites within the genome through homologous recombination

Uses – Precisely engineer gene loss, gene addition, subtle mutations, reporter constructs into specific places within the mouse genome

Advantages – Physiological gene regulation

Disadvantages – Slow and more difficult to carry out
Targeted mutations can cause embryonic lethal phenotypes
Types of GEM Models

Wild-type locus

- **Uses:** Loss of function mutations in tumor suppressor genes

Knockout mouse

- **Uses:** Loss of function mutations in tumor suppressor genes

Knockin mouse

- **Uses:** Reporter alleles for developmental biology Gene function analysis

Targeted Mutant

- **Uses:** Targeting subtle mutations into mice

Examples

- **p53 -/- mice:** lymphomas, sarcomas
- **Rb +/- mice:** pituitary tumors
- **SHH-β-Gal:** marking SHH+ cells
- **K-rasH-Ras:** ID differences between K-ras and H-ras
- **p53 R172H/-:** lymphomas, sarcomas and carcinomas
Latent mice rely on stochastic recombination in vivo

K-rasLA1 Lung Cancer Model

Uses – Spontaneous tumor models

Advantages – Random cells are mutated, surrounded by wild-type cells.

Disadvantages – Don’t know which cells underwent recombination
Different cell types have different rates of recombination
Allele is null prior to recombination
Advanced genetic tools enable construction of complex gene regulation strategies

Recombinases – Enzymes that catalyze site specific recombination

Inducible alleles – Genes or proteins sensitive to the presence of a specific chemical

Transposons – Mobile genetic elements who excision and reinsertion into the genome is catalyzed by an enzyme (transposase)

Reporters – Genes that allow visualization through microscopy, histochemistry, or *in vivo* imaging
Cre is a site-specific bacterial recombinase

LoxP sites are conventionally represented as:
Cre catalyzes two types of reactions:

Excision

LoxP → LoxP → Cre → LoxP +

Inversion

LoxP → LoxP → Cre → LoxP → LoxP
Variant Lox sites have been identified with useful properties

Unidirectional Inversion (10-fold weighting towards forward reaction)

Incompatible Sites

Not seen:
Conditional mouse models

Cre/lox technology is widely used to create conditional alleles

Uses – Conditional loss of gene function in mice

Advantages – Spatial control can be achieved by expressing Cre from a tissue specific promoter. Temporal control can be achieved by expressing Cre from a stage specific promoter, or by using inducible alleles to control Cre expression. Gene is COMPLETELY lost from recombined cell

Disadvantages – Requires two alleles: conditional knockout, and Cre allele. Because deletion is a binary event, even very low-level expression of Cre yields a 100% deletion
Conditional mouse models

Uses – Conditional expression of wild-type or mutant proteins under endogenous regulation

Advantages – Pysiological control of gene expression
Spatial and temporal restriction of gene expression

Disadvantages – Requires two alleles: conditional knockout, and Cre allele
Allele is null prior to recombination
Sensitive to low-level Cre expression

Conditional activatable

- **Pro.**
- **I**
- **II**
- **IV**
- **V**

* = LoxP site

LSL = LoxP-STOP-LoxP

<table>
<thead>
<tr>
<th>Non-targeted Cells</th>
<th>Targeted Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before After</td>
<td>Before After</td>
</tr>
<tr>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>+/-</td>
<td>+/+</td>
</tr>
</tbody>
</table>

Conditional mutant

- **Pro.**
- **I**
- **II**
- **IV**
- **V**

* = LoxP site

LSL = LoxP-STOP-LoxP

<table>
<thead>
<tr>
<th>Non-targeted Cells</th>
<th>Targeted Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before After</td>
<td>Before After</td>
</tr>
<tr>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>+/-</td>
<td>+/-</td>
</tr>
</tbody>
</table>
Inducible alleles

Tetracycline inducible genes

- rtTA
- TSP
- TetR
- VP16

Tet inducible gene

- tetO
- cDNA

Uses – Dose-dependent expression of gene products through administration of tetracycline

Advantages – Precise temporal and amplitude control of gene expression

Disadvantages – Requires two alleles: tet inducible allele and rtTA
- Little spatial control
- Non-physiological gene expression
Inducible alleles

Tamoxifen inducible alleles

Uses – Regulation of protein activity through administration of Tamoxifen

Advantages – Can control time and place of expression
Tighter than tet-induced systems

Disadvantages – Tamoxifen is expensive
Targeted protein must tolerate an N- or C-terminal fusion
Reporter alleles

Activate expression of a marker gene under given conditions

Cre reporter: Activated when LoxP sites are removed

Pathway reporter: Activated proportional to the activity of a transcription factor

Fusion protein: Reporter protein is directly fused to another protein of interest

Reporter genes are typically optically based (visible, near-infrared)

May be imaged by luminescence, fluorescence

Instruments include 2-photon microscopy and whole animal imaging

May also include reporters for MRI, PET, and SPECT
Putting it together: the Brainbow Mouse

Creativity

d Test *in vitro*

<table>
<thead>
<tr>
<th></th>
<th>No Cre</th>
<th>+ Cre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- OFP
- M-RFP
- M-YFP
- M-CFP
The coming revolution... has arrived, kinda

- CRISPR = Clustered Regularly Interspaced Short Palindromic Repeats
- Cas = CRISPR-associated

- Used by bacteria/archaea as an “adaptive immune defense”
- Involves targeted degradation of foreign nucleic acids using short RNA and Cas9.

http://www.youtube.com/watch?v=M739wgbcKuA
Theme and variation

- Cas9 nuclease or nickase cleavage
 - Cuts
 - Deletions
 - Nicks
 - Offset nicks

- Cas9$_\text{nuclease-null}$ protein fusions
 - Regulation
 - Labeling
 - Nucleases
 - Recombinases

- Cas9$_\text{nuclease-null}$ nucleic acid tethers
 - Regulation
 - Scaffold
 - Competition
 - Aggregation
Rapid modelling of cooperating genetic events in cancer through somatic genome editing

Francisco J. Sánchez-Rivera¹,²*, Thales Papagiannakopoulos¹*, Rodrigo Romero¹,², Tuomas Tammela¹, Matthew R. Bauer¹, Arjun Bhutkar¹, Nikhil S. Joshi¹, Lakshmipriya Subbaraj¹, Roderick T. Bronson³,⁴, Wen Xue¹ & Tyler Jacks¹,²,⁵
Somatically Engineered Mouse Models

Uses – Generating specific mutations on a wild-type background
Engineering tumor mutations in mice with genetically altered stromal cells

Advantages – Specific mutations (mostly)
Immune competent
Stochastic alteration of cells - not every cell in a tissue is mutant!
No background mutations
Does not require years of breeding
Cheap and fast relative to GEMMs

Disadvantages – Complex alleles are not yet possible
Inefficient targeting in vivo - just 1-2% of cells are transduced.
Not yet developed for all organ systems
Lack of available reporter genes
Small animal imaging enables the study of mouse models

Vevo 2100 Ultrasound

IVIS Quantum FX Micro CT

Bruker 9.4T MRI

IVIS Spectrum
Ultrasound is a non-invasive imaging technique.
Small Animal Imaging SR

High resolution ultrasound
Tomography can be used to reconstruct 3D tumor volumes.

Pancreatic Tumor
Contrast ultrasound shows pancreatic tumors are poorly perfused.
Micro CT Imaging is ideal for bone and lung
Co-registration of optical + CT data